

ACYLATED GHRELIN (human) EASY SAMPLING

For laboratory research only. Not for human or veterinary diagnostic use.

Bertin Bioreagent also markets pre-analytical products, ELISA kits, antibodies & biochemicals for:

- **▶** Inflammation
- **▶** Oxidative injury
- Endocrinology
- **Diabetes**
- Obesity
- **▶** Hypertension
- **▶** Pain
- ▶ Prion diseases

Do not hesitate to contact our after-sales services for further information at tech@bertin-bioreagent.com

Acylated Ghrelin (human) Easy Sampling ELISA kit #A05306.96 wells

For research laboratory use only Not for human diagnostic use

This assay was developed & validated by Bertin Bioreagent

Fabriqué en France Made in France

#A11306

Version: 0124

Table of contents

PRECAUTION FOR USE	6
BACKGROUND	7
PRINCIPLE OF THE ASSAY	9
ASSAY CHARACTERISTICS	12
MATERIALS AND EQUIPMENT REQUIRED	22
SAMPLE COLLECTION AND PREPARATION	23
REAGENT PREPARATION	25
ASSAY PROCEDURE	28
ASSAY PROCEDURE SUMMARY	32
DATA ANALYSIS	33
ACCEPTABLE RANGE	34
TYPICAL RESULTS	34
TROUBLESHOOTING	35
BIBI IOGRAPHY	37

96 wells Storage: -20°C Expiry date: stated on the package

This kit contains:

Designation	Colour of cap	Item #	Quantity per kit	Form
Strip 96 well Microtiter plate, pre-coated with anti-Ghrelin mouse monoclonal antibody Easy Sampling	Blister with zip	A08306.1 ea	1	-
Acylated Ghrelin (human, rat) Tracer Easy Sampling	Green	A04306.100 dtn	1	Lyophilised
Acylated Ghrelin (human) Standard	Blue with red septum	A06106.1 ea	2	Lyophilised
Acylated Ghrelin (human) Quality Control	Green with red septum	A10106.1ea	2	Lyophilised
Acylated Ghrelin ELISA Buffer	Blue	A07106.1 ea	1	Lyophilised
Wash Buffer concentrated 400x	Silver	A17000.1 ea	1	Liquid
Tween 20	Transparent	A12000.1 ea	1	Liquid
Ellman's reagent 49+1	Black with red septum	A09000_49+1 .100 dtn	2	Lyophilised
Technical Booklet	-	A11306	1	-
Well cover Sheet	-	-	1	-

Each kit contains sufficient reagents for 96 wells. This allows for the construction of one standard curve in duplicate and the assay of 36 samples in duplicate.

Precaution for use

Users are recommended to carefully read all instructions for use before starting work.

Each time a new pipette tip is used, aspirate a sample or reagent and expel it back into the same vessel. Repeat this operation two or three times before distribution in order to equilibrate the pipette tip.

- For research laboratory use only
- Not for human diagnostic use
- Do not pipet liquids by mouth
- Do not use kit components beyond the expiration date
- Do not eat, drink or smoke in area where kit reagents are handled
- Avoid splashing

The total amount of reagents contains less than $100\mu g$ of sodium azide. Flush the drains thoroughly to prevent the production of explosive metal azides.

Wearing lab gloves, laboratory coat and eye protection glasses is recommended when assaying kit materials and samples.

Temperature

Unless otherwise specified, all the experiments are done at room temperature (RT), which is around $+20^{\circ}$ C. Working at $+25^{\circ}$ C or more affects the assay and decreases its efficiency.

Background

Acetylcholinesterase AChE Technology

Acetylcholinesterase (AChE), the enzymatic label for EIA, has the fastest turnover rate of any enzymatic label. This specific AChE is extracted from the electric organ of the electric eel, *Electrophorus electricus*, and it is capable of providing a rapid catalytic turnover during the generation of the electrochemical discharges. The use of AChE as enzymatic label for EIA is patented by the French academic research Institute CEA *[1, 2, 3]*, and Bertin Bioreagent has expertise to develop and produce EIA/ELISA kits using this technology.

AChE assays are revealed with Ellman's reagent, which contains acetylthiocholine as a substrate. The final product of the enzymatic reaction (5-thio-2-nitrobenzoic acid), is bright yellow in color and can be read at 405-414 nm using a spectrophotometer. AChE offers several advantages over other commonly used enzymes used in EIAs:

- Kinetic superiority and high sensitivity: AChE shows true first-order kinetics with a turnover of 64,000 sec⁻¹. That is nearly 3 times faster than Horse Radish Peroxidase (HRP) or alkaline phosphatase. AChE provides greater sensitivity than other labeling enzymes.
- Low background: Non-enzymatic hydrolysis of acetylthiocholine in buffer is essentially absent.
 Thus, AChE ensures a very low background and an

- increased signal/noise ratio compared to other substrate of enzymes that are inherently unstable.
- Wide dynamic range: AChE is a stable enzyme and its activity remains constant for many hours.
 Unlike other enzymes, AChE has substrate that is not suicidal which permits simultaneous assays of high and low concentration samples.
- Versatility: AChE is a completely stable enzyme, unlike peroxidase which is suicidal. The accidentally dropped plate containing AChE substrate (Ellman's reagent) does not need to be discarded and experiment can be continued by adding washing buffer and fresh Ellman's reagent into the plate wells. As an option Otherwise, plate can be stored at +4°C containing washing buffer while waiting for technical advice from the Bioreagent Department.

Ghrelin

Ghrelin discovered in 1999, is fast becoming an endocrinology target of the millennium. Ghrelin, identified in rat stomach as an endogenous ligand for the GH secretagogue receptor, is mainly produced in stomach, but has been demonstrated in many other organs [4, 5].

In addition to GH-releasing properties and its orexant action, Ghrelin could act as an hormone having effects on gastric motility (similarity with the peptide hormone motilin), acidic secretion, cardiovascular action, antiproliferative effects, pancreatic and glucose metabolism function, sleep [6, 7, 8]...

Ghrelin gene raises to mRNA prepro-ghrelin of 117 amino

acids. This precursor is processed into Ghrelin, 28 amino acids (human).

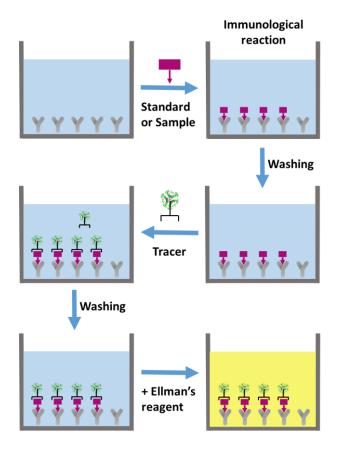
Before being secreted, this peptide is octanoylated at Ser 3 by GOAT (Ghrelin Octanoyl Acyl Transferase). This step is essential for biological activity making GOAT a perfect target for drugs in feeding behaviour. Interestingly, the potential therapeutic importance of this hormone is not restricted to regulation of food intake [9] but also in cachexia (related to cancer treatment, anorexia nervosa or ischemia) [10] gastric motility and may be involved in osteoporosis, somatopause, infertility and ovulation induction, neurological disorders (Alcoholism, Post Traumatic Stress disorders...) [11] and cardiovascular diseases.

Principle of the assay

The Enzymatic Immunoassay (ELISA) is based on a sandwich technique. Wells of supplied plate are coated with a monoclonal antibody specific to the C-terminal part of Ghrelin.

This antibody will bind to any Ghrelin introduced into the wells (standard or sample). After a washing step, the acetylcholinesterase (AChE) - Fab' conjugate (Tracer) which recognises the N-terminal part of Acylated Ghrelin is then added to the wells.

The two antibodies then form a sandwich by binding on different parts of the Acylated Ghrelin.


The sandwich is immobilised on the plate where excess reagents are washed away.

The concentration of Acylated Ghrelin (human) is determined by measuring the enzymatic activity of immobilized Tracer using Ellman's reagent. AChE tracer acts on Ellman's Reagent to form a yellow compound that strongly absorbs at 414 nm.

The intensity of colour, which is determined by spectrophotometry, is proportional to the amount of Acylated Ghrelin (human) present in the well during the immunological reaction.

This ELISA so called Easy Sampling ELISA kit works with any sample collected on any kind of protease inhibitors, without extraction but a simple dilution.

The principle of the assay is summarised below:

Assay characteristics

Validated for use:

- in buffer
- in plasma (without extraction but diluted at least at 1/2).

A 5-parameter logistic fitting with ponderation $1/Y^2$ was used to determine the concentrations. For additional information regarding the validation of imunoassay for protein biomarkers in biological samples, please refer to bibliography **[12, 13]**.

Limit of detection (LOD): calculated as the concentration of Acylated Ghrelin corresponding to the NSB average (n = 8) plus three standard deviations is 2 pg/mL. Due to the minimal plasma dilution (1/2), the limit of detection in the samples is 4 pg/mL.

Intra-assay & inter-assay variations and recovery

	Inte	er-assa	ıy	Intra-assay		
QC levels after 1/5 dilution (pg/mL)	Mean of observed concentra- tions (pg/mL)	CV (%)	Recovery (%)	Mean of observed concentra- tions (pg/mL)	CV (%)	Recovery (%)
200(ULOQ)	217.0 10.0		8.6	228.0	2.6	13.8
150 (HQC)	163.0 7.0		8.5	167.0	2.8	11.6
50 (MQC)	45.9 13.5		-8.3	45.8	4.8	-8.3
10 (LQC)	9.6 20.1		-4.2	9.0	15.1	-10.1
5 (LLOQ)	5.1	27.6	-2.2	4.2	21.6	-16.6

ULOQ : Upper Limit of Quantification LLOQ: Lower Limit of Quantification HQC : High QC MQC: Mid QC LQC : Low QC

The intra-assay and inter-assay variations were studied on a pool of human plasma containing AEBSF 0.4 mg/mL (free of Ghrelin) spiked samples for each level of QC. QC were prepared five times concentrated from a pool of human plasma and then diluted to 1/5 in ELISA Buffer before assay. For within-run precision and accuracy, the number of replicates (\mathbf{n}) is equal to 6 for each level of QC, the five QC samples were analyzed along with the calibration curve for a unique experiment.

For between-run precision and accuracy, the number of replicates (n) is equal to 6 for each level of QC, the five QC samples were analyzed along with the calibration curve for a total of 9 independent experiments.

Selectivity

Matrix	Mean of measured concentration (pg/mL)	CV (%)	Recovery (%)
1	6.49	3.18	29.7
2	6.05	3.53	20.9
3	6.14	4.95	22.7
4	6.35	2.18	26.9
5 (haemolysed)	3.96	10.70	-20.7
6	5.44	3.83	8.8
7	5.54	6.69	8.8
8	5.71	9.73	14.2
9	5.13	10.70	2.5
10 (haemolysed)	3.66	4.26	-26.7

Selectivity was tested by spiking 10 sources of sample matrix containing AEBSF at 0.4 mg/mL at the LLOQ (n=3). These sources included 2 haemolysed samples (matrix 5 and 10). QC samples (n=3) were prepared five times concentrated in each matrix (free of Ghrelin) and then diluted to 1/5 in ELISA buffer in order to obtain a final concentration of 5 pg/mL and analyzed against a calibration curve.

Specificity

Specificity was tested by adding AEBSF at 0.4~mg/mL (recommended use concentration = reference) and 2 mg/mL (high concentration) or aprotinin at 1.2~TIU/mL with or without HCl 0.1~N final into sample matrix (a pool of human plasma samples) and measuring the accuracy of the Acylated Ghrelin (human) at both LLOQ and ULOQ (n=3).

Matrix	QC level after 1/5 dilution (pg/mL)	Mean of measured concentration (pg/mL)	CV (%)	Recovery (%)
AEBSF	5	5.25	9.23	4.91
0.4 mg/mL	200	224	1.36	11.80
AEBSF	5	5.17	7.62	3.32
0.4 mg/mL + HCl 0.1N	200	228	0.97	14.00
AEBSF 2 mg/mL	5	4.35	13.30	-13.00
ALBSF Z IIIg/IIIL	200	200	1.09	-0.13
AEBSF 2 mg/mL	5	4.91	11.20	-1.72
+ HCl 0.1N	200	209	4.81	4.48
Aprotinin	5	4.38	5.05	-12.50
1.2 TIU/MI	200	211	1.32	5.66
Aprotinin	5	4.88	3.99	-2.31
1.2 TIU/mL + HCl 0.1N	200	215	3.54	7.31

Dilution tests

Dilution linearity was tested by spiking a pool of human plasma samples (free of Ghrelin) containing AEBSF at 0.4 mg/mL at 2000 pg/mL (n=3) and measuring precision and accuracy after serial dilution in ELISA buffer to bring the Acylated Ghrelin concentrations into the validated range for analysis (between ULOQ and LLOQ).

Dilution factor	Theoretical concentration (pg/mL)	Measured concentration (pg/mL)	Corrected concentration (pg/mL)	Recovery (%)	Mean recovery	% C
		188.6	1886	-5.69		
1/10	200	206.6	2066	-3.32	-1.33	
		8'961	1968	-1.62		
		6'06	1 817	-9.14		
1/20	100	2.66	1 995	-0.25	-5.98	
		91.5	1 829	-8.55		
		46.3	1 852	-7.42		
1/40	20	46.7	1 868	-6.61	-8.64	5.27
		44.1	1 763	-11.90		
		22.2	1 776	-11.20		
1/80	25	22.2	1 776	-11.20	-9.60	
		23.4	1 872	-6.41		
		11.1	1 768	-11.60		
1/160	12.5	12.7	2 028	-1.39	-4.32	
		12.2	1 945	-2.74		

Parallelism

Parallelism between the calibration standard curve and serial diluted samples was tested by diluting 3 samples containing AEBSF at 0.4 mg/mL in ELISA buffer (n=3) to bring the Acylated Ghrelin concentrations into the validated range for analysis (between ULOQ and LLOQ).

Sample	Dilution series	Dilution factor	Measured concentration (pg/mL)	Corrected concentrations (pg/mL)	CV (%)
		1/5	13.30	66.3	
	1	1/10	6.60	66.0	29.3
		1/20	5.32	106.0	
		1/5	13.00	65.0	
1	2	1/10	6.01	60.1	12.7
		1/20	2.52	50.4	
	3	1/5	10.80	54.0	
		1/10	4.70	47.0	10.0
		1/20	2.87	57.3	
	1	1/2	13.80	27.6	
		1/5	4.06	20.3	18.8
		1/10	2.02	20.2	
		1/2	13.50	27.0	
2	2	1/5	4.32	21.6	11.8
		1/10	2.29	22.9	
	_	1/2	15.20	30.4	
	3	1/5	4.52	22.6	16.7
		1/10	2.34	23.4	

Sample	Dilution series	Dilution factor	Measured concentration (pg/mL)	Corrected concentrations (pg/mL)	CV (%)
		1/2	14.80	29.7	
	1	1/5	4.72	23.6	15.5
		1/10	2.24	22.4	
	2	1/2	14.20	28.4	
3		1/5	4.72	34.4	12.0
		1/10	2.29	22.9	
		1/2	2 13.90 2	27.7	
	3	1/5	4.82	24.1	9.2
		1/10	2.34	23.4	

Stability test (freezing/thawing, 24h at +5°C and 24h at +20/+25°C)

Stability of Acylated Ghrelin was evaluated by using Low and High QC samples. These QC samples (n=3) were prepared from a pool of human plasma (free of Ghrelin) containing AEBSF at 0.4 mg/mL or Aprotinin at 1.2 TIU/mL and then frozen at -20°C for freeze/thaw stability or stored 24h at +5°C or at 20/25°C for short-term stability.

Conditions	QC level after 1/5 dilution (pg/mL)	Mean of measured concentration (pg/mL)	CV (pg/mL)	Recovery (%)
Freeze/thaw 1 cycle	10	9.5	3.48	-4.53
AEBSF 0.4 mg/mL	150	165	1.93	10.30
Freeze/thaw 3 cycles	10	11.0	10.90	10.10
AEBSF 0.4 mg/mL	150	157	8.31	4.89
Freeze/thaw 1 cycle	10	10.3	9.12	3.18
Aprotinin 1.2 TIU/mL	150	156	8.81	4.18
Freeze/thaw 3 cycle	10	9.5	12.90	-4.49
Aprotinin 1.2 TIU/mL	150	150	3.79	-0.15
24h at +5°C	10	8.0	3.52	-20.20
AEBSF 0.4 mg/Ml	150	138	3.91	8.27
24h at 20/25°C	10	3.3	7.82	-66.80
AEBSF 0.4 mg/mL	150	65.4	3.90	-56.40

Long term stability (3 months at -20°C & -80°C)

Conditions	QC level after 1/10 dilution (pg/mL)	Mean of measured concentration (pg/mL)	CV (pg/mL)	Recovery (%)
3 months at	10	8.33	4.17	-16.70
-20°C	150	159	4.23	6.28
3 months at	10	9.64	5.66	-3.60
-80°C	150	171	2.19	14.20

Cross-reactivity

Molecule/Species	Cross-reactivity
Acylated Ghrelin (rat)	100%
Acylated Ghrelin (dog)	85%
UnAcylated Ghrelin (human)	<1 %
UnAcylated Ghrelin (rat)	<1 %
Uncylated Ghrelin (dog)	<1 %
Ghrelin (1-14) (human)	<0.001 %
Ghrelin (1-11) (rat)	<0.001 %
Ghrelin (17-28) (human, rat)	<0.001 %
GHRF (human)	<0.001 %
Insulin (human)	<0.001 %
Motiline	<0.001 %
Leptin (human)	<0.001 %
Somatostatine	<0.001 %
CRF (human, rat)	<0.001 %
Glucagon (human, rat)	<0.001 %

> Protease Inhibitor compatibility table

	AEBSF	PMSF	Pefabloc	P800	Aprotinin	РНМВ
A05306.96 wells	YES	YES	YES	YES	YES	YES
A05106.96 wells	NO	YES	NO	NO	YES	YES

Plasma samples were collected on different protease inhibitors according to vendors instruction and measured with the appropriate kit. Recovery is different from one inhibitor to the other and it belongs to the end user to define according to its needs which inhibitor to be used.

Acidification has also been tested with most inhibitors and may also change recovery, but will not affect the assay performances providing that 1/5 dilution with ELISA Buffer or neutralisation is performed.

Related products

Item Reference	Designation	Application	
A05106.96 wells	Acylated Ghrelin (human) Express ELISA kit	PHMB, PMSF, Aprotinin samples	
A05106.384 wells	Acylated Ghrelin (human) 384w ELISA kit	GOAT inhibitor screening	
A05117.96 wells	Acylated Ghrelin (mouse, rat) Express ELISA kit	PHMB, PMSF, Aprotinin samples	
A05118.96 wells	UnAcylated Ghrelin (mouse, rat) Express ELISA kit	PHMB, PMSF, Aprotinin samples	
A05119.96 wells	UnAcylated Ghrelin (human) Express ELISA kit	PHMB, PMSF, Aprotinin samples	
A05306.96 wells	Acylated Ghrelin (human) Easy Sampling ELISA kit		
A05317.96 wells	Acylated Ghrelin (mouse, rat) Easy Sampling ELISA kit		
A05318.96 wells	UnAcylated Ghrelin (mouse, rat) Easy sampling ELISA kit		
A05319.96 wells	UnAcylated Ghrelin (human) Easy Sampling ELISA kit		
A05320.96 wells	UnAcylated Ghrelin (dog) Easy Sampling ELISA kit		
A05321.96 wells	Acylated Ghrelin (dog) Easy Sampling ELISA Kit		
A05401.96 wells	Acylated Ghrelin (pig) ELISA kit	PHMB, PMSF, Aprotinin samples	
A05402.96 wells	UnAcylated Ghrelin (pig) PHMB, PMSF, Aprotini ELISA kit samples		
D31009	Sampling Tubes with PHMB	Sample preparation	

Materials and equipment required

In addition to standard laboratory equipment, the following material is required:

For the sample preparation:

- EDTA tubes for blood collection
- Protease inhibitor (AEBSF, PMSF, Aprotinin, Pefabloc[®], P800, PHMB ...)
- UltraPure water #A07001

For the assay:

- Precision micropipettes (20 to 1000 μL)
- Spectrophotometer plate reader (405 nm or 414 nm filter)
- Microplate washer (or wash bottles)
- Orbital microplate shaker able to perform at 600 rpm
- Multichannel pipette and disposable tips 30-300µL
- UltraPure water #A07001.1L
- Polypropylene tubes

Water used to prepare all ELISA reagents and buffers must be UltraPure (deionized & free from organic contaminant traces).

Do not use distilled water, HPLC-grade water or sterile water.

 UltraPure water may be purchased from Bertin Bioreagent (item #A07001.1L).

Sample collection and preparation

This assay has been validated to measure Acylated Ghrelin in buffer and in plasma samples (see validation data paragraph).

General precautions

- All samples must be free from organic solvents prior to assay.
- Samples should be assayed immediately after collection or should be stored at -20°C or at -80°C prior the use with the assay.

Sample collection

 Blood samples are collected in tubes containing EDTA and a protease inhibitor to prevent the degradation of Acylated Ghrelin.

Choice of protease inhibitor

We suggest adding AEBSF at 0.2 mg/mL blood during blood collection.

We suggest preparing a 100 times concentrated solution of protease inhibitor and then adding $10\mu L$ of this solution per mL of blood. For example, for AEBSF, prepare a mother solution at 20 mg/mL in UltraPure water and add $10~\mu L$ of this solution per mL of blood. The mother solution may be stored one month at $-20^{\circ}C$. We suggest using aliquots for AEBSF solution in order to avoid freezing/thawing cycles.

Other protease inhibitors could be used with the assay like Aprotinin (up to 0,6 TIU/mL blood), PMSF (around 0.1 mg/mL blood according to literature), PHMB, Pefabloc® or Pefabloc SC® (up to 0.2 mg/mL blood) as indicated in the section "Protease inhibitor compatibility table". For the use of these different products, please refer to the vendor's instructions.

Collection tubes are mixed by inversion 5 times.

Samples should be kept on ice between collection and centrifugation (15 minutes max).

- Blood samples are centrifuged at 3,500 rpm for 10 minutes at +4°C and then, supernatants are transferred in separate tubes.
 Samples should be quickly assayed or stored at -20°C
 - Samples should be quickly assayed or stored at -20°C or at -80°C for later use within 6 months.
- The best way is to assay the samples within 3 weeks after the collection date. Moreover, we suggest using aliquots for plasma samples (we suggest 250 μl per aliquot) in order to avoid freezing/thawing cycles.

Plasma samples prepared as above-mentioned can be assayed for Acylated Ghrelin with Acylated Ghrelin Easy Sampling EIA kit or for UnAcylated Ghrelin with UnAcylated Ghrelin Easy Sampling EIA kit.

Sample preparation

Plasma samples may be assayed directly without any extraction procedure after being **diluted at least to 1/2 in ELISA Buffer** in order to avoid matrix effect.

Reagent preparation

Each kit contains sufficient reagents for 96 wells. This allows for the construction of one standard curve in duplicate and the assay of 36 samples in duplicate according to suggested plate layout.

An additional vial of Standard, Quality Control and Ellman's Reagent are provided in case you need to perform 2 assays with the kit.

All reagents must be brought to room temperature (around +20°C) prior the use in assay.

ELISA Buffer

Reconstitute the ELISA Buffer #A07106 with 50 mL of UltraPure water. Allow buffer to stand for 5 minutes or until it is completely dissolved. Mix buffer thoroughly by gentle inversions.

Stability at 4°C: 1 month.

Acylated Ghrelin (human) Standard

Reconstitute the Standard vial #A06106 with 1 mL of UltraPure water. Allow standard to stand for 5 minutes or

until it is completely dissolved. Mix standard thoroughly by gentle inversions.

The concentration of the first standard (S1) is 250 pg/mL. Prepare seven polypropylene tubes (for the seven other standards) and add 500 μ L of ELISA Buffer into each tube. Then prepare the standards by serial dilutions as indicated in following table. Mix each tube thoroughly before the next transfer.

Standard	Volume of Standard	Volume of ELISA Buffer	Standard concentration pg/mL
S1	-	-	250
S2	500 μL of S1	500 μL	125
S3	500 μL of S2	500 μL	62.5
S4	500 μL of S3	500 μL	31.3
S5	500 μL of S4	500 μL	15.6
S6	500 μL of S5	500 μL	7.8
S7	500 μL of S6	500 μL	3.9
S8	500 μL of S7	500 μL	2.0

Stability at +4°C: 1 week

Acylated Ghrelin (human) Quality Control

The Quality Control provided in this kit has been prepared by spiking Acylated Ghrelin (human) peptide in ELISA Buffer.

Reconstitute the Acylated Ghrelin (human) QC vial #A10106 with 1 mL of UltraPure water. Allow quality control to stand

for 5 minutes or until it is completely dissolved. Mix quality control thoroughly by gentle inversions. Stability at $4^{\circ}C$: 1 week.

Acylated Ghrelin Tracer Easy Sampling

Reconstitute the Ghrelin Tracer vial #A04306 with 10 mL of ELISA Buffer. Allow tracer to stand for 5 minutes or until it is completely dissolved. Mix tracer thoroughly by gentle inversions.

Stability at +4°C: 1 weeks.

Wash Buffer

Dilute 2 mL of concentrated Wash Buffer #A17000 with 800 mL of UltraPure water. Add 400 μ L of Tween 20 #A12000. Use a magnetic stirring bar to mix the content. Note that concentrated Wash Buffer is also used for Ellman's reagent preparation.

Stability at +4°C: 1 week.

Ellman's Reagent

5 minutes before use (development of the plate), reconstitute one vial of Elman's Reagent #A09000_49+1 with 49 mL of UltraPure water and 1 mL of **concentrated** Wash Buffer#A17000. The tube content should be thoroughly mixed.

Stability a +4°C and in the dark: 24 hours.

Assay procedure

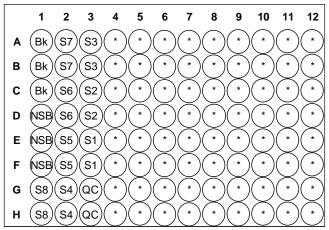
It is recommended to measure the samples in duplicate following the instruction below.

Plate preparation

Prepare the Wash Buffer as indicated in the reagent preparation section.

Open the plate pouch and select enough strips for your assay. Place unused strips back in the pouch.

Stability at +4°C: 1 month.


Rinse each well 5 times with Wash Buffer (300 µL/well).

Just before distributing the reagents and samples, remove the buffer from the wells by inverting the plate and blot the last drops by tapping it on paper towels.

Plate set-up

A plate set-up is suggested hereafter.

The content of each well may be recorded on the template sheet provided at the end of this technical booklet.

Bk: Blank S1-S8: Standards 1-8

NSB: Non Specific Binding

* : Samples QC: Quality Controls

Pipetting the reagents

All samples and reagents must reach room temperature prior performing the assay.

Use new tips to pipet buffers, standards, samples, antibody and other reagents.

Before pipetting, equilibrate the pipette tips in each reagent. Do not touch the liquid already in the well when expelling with the pipette tip.

ELISA Buffer

Dispense 100 µL to Non Specific Binding wells (NSB) wells.

Acylated Ghrelin (human) Standards

Dispense $100~\mu L$ of each of the eight standards (S8 to S1) in duplicate to appropriate wells.

Start with the lowest concentration standard (S8) and equilibrate the tip in the next higher standard before pipetting.

Sometimes of the state of th

Dispense 100 μL in duplicate to appropriate wells. Highly concentrated samples may be diluted in ELISA Buffer.

Incubating the plate

Cover the plate with cover sheet and incubate 2 hours at room temperature on an orbital shaker (at 600 rpm).

Washing the plate

- Empty the plate by inverting it.
- Proceed with the following washing steps:
 - Wash each well 4 times with 300 μL of Wash Buffer;
 - Wash each well 1 time with 300 µL of Wash Buffer under slight agitation on an orbital shaker during 5 minutes:
 - Wash each well 5 times with 300 μL of Wash Buffer;

 At the end of the last washing step, empty the plate and blot the plate on a paper towel to discard any trace of liquid.

Pipetting the reagents

Acylated Ghrelin Tracer

Dispense 100 µL to each well, except blank (Bk) wells.

Incubating the plate

Cover the plate with cover sheet and incubate 2 hours at room temperature on an orbital shaker (at 600 rpm).

Developing and reading the plate

- Reconstitute Ellman's reagent as mentioned in the Reagent preparation section.
- Empty the plate by inverting it. Proceed with the following washing steps:
 - Wash each well 4 times with 300 μL of Wash Buffer;
 - Wash each well 1 time with 300 µL of Wash Buffer under slight agitation on an orbital shaker during 5 minutes;
 - Wash each well 5 times with 300 μL of Wash Buffer;
 - At the end of the last washing step, empty the plate and blot the plate on a paper towel to discard any trace of liquid.
- Add 200µL of Ellman's reagent to each 96 well.
- Cover the plate with aluminum sheet and incubate in

- the dark at room temperature. Optimal development is obtained using an orbital shaker.
- Wipe the bottom of the plate with a paper towel, and make sure that no liquid has splashed outside the wells.
- Read the plate at 405 nm or at 414 nm (yellow color) using spectrophotometer plate reader.

After addition of Ellman's reagent, the absorbance has to be checked periodically (every 30 minutes) until the maximum absorbance has reached a minimum of 0.5 A.U. blank subtracted.

Assay procedure summary

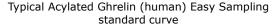
Easy Sampling Enzyme Immunoassay Protocol (volumes are in μL)					
	Blank	NSB	Standard	Sample or QC	
ELISA Buffer	-	100	-	-	
Standard	-	-	100	-	
Sample or QC	-	-	-	100	
Cover plate, incubate 2 hours at 600rpm					
Wash plate x4, Wash & shake plate x1, Wash plate x5 Discard liquid from the wells					
Tracer	-	100	100	100	
Cover plate, incubate 2 hours at 600rpm					
Wash plate x4, Wash & shake plate x1, Wash plate x5 Discard liquid from the wells					
Ellman's reagent	200				
Incubate with an orbital shaker in the dark at RT					
Read the plate at 405 nm or at 414 nm					

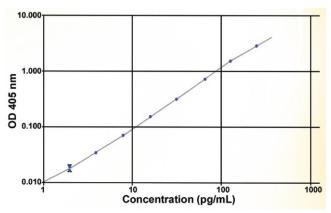
Data analysis

Make sure that your plate reader has subtracted the absorbance readings of the blank wells from the absorbance readings of the rest of the plate.

- Calculate the average absorbance for each NSB, standards and samples.
- For each standard, plot the absorbance (y axis) versus the concentration (x axis) graph. Draw a best-fit line through the points.
- To determine the concentration of samples, find the absorbance value of each sample on the y axis.
- Read the corresponding value on the x axis which is the concentration of unknown samples (due notably to the minimal dilution for the assay 1/2).
- Samples with a concentration greater than 250 pg/mL must be re-assayed after dilution in ELISA Buffer.
- Most plate readers are supplied with curve-fitting software capable of graphing these data (logit/log or 4parameter logistic fi t 4PL). It is highly recommended to use this software if available on the device. Refer to it for further information.

2 vials of Quality Control are provided with this kit. Your standard curve is validated only if the calculated concentration of the Quality Control obtained with the assay is +/- 25% of the expected concentration (see the label of the QC vial)


Acceptable range


- Non-Specific Binding < 50 mA.U.
- Limit of detection in sample before dilution < 2 pg/mL.
- QC sample: ±25% of the expected concentration (see the label of the QC vial).

Typical results

The following data are for demonstration purpose only. Your data may be different and still correct. The data were obtained using all reagents as supplied in this kit under the following conditions: 60 minutes developing at room temperature, reading at 414 nm. A 5-parameter logistic fitting with a $1/Y^2$ was used to determine the concentrations.

Standard	Acylated Ghrelin (human) pg/mL	Absorbance (mA.U)
S1	250	2875
S2	125	1518
S3	62.5	741
S4	31.3	324
S5	15.6	163
S6	7.8	81
S7	3.9	43
S8	2.0	28
Blank	0.0	10

Troubleshooting

> Absorbance values are too low:

- organic contamination of water,
- one of the reagents was not properly dispensed,
- incorrect preparation/ dilution,
- assay performed before reagents reached room temperature,
- reading time not long enough.

High signal and background in all wells:

inefficient washing,

- overdeveloping (incubation time should be reduced),
- high ambient temperature.

High dispersion of duplicates:

- poor pipetting technique,
- irregular plate washing.
 - If a plate is accidentally dropped after dispatch of the AChE substrate (Ellman's Reagent) or if it needs to be revealed again:
 - one only needs to wash the plate, add fresh Ellman's Reagent and proceed with a new development.
- otherwise, the plate can be stored at +4°C with Wash Buffer in wells while waiting for technical advice from the Bioreagent Department.

These are a few examples of troubleshooting that may occur. If further information or explanation is needed, please contact Bertin Bioreagent Technical Support by phone on +33 (0)139 306 036, or by E-mail tech@bertin-bioreagent.com. Please have batch number of the kit (see outside the box) ready to provide to the technical support.

Bertin Bioreagent offers EIA Training kit #B05005. Feel free to contact our Technical Support. We are always happy to hearing from you.

Bibliography

1. Grassi J. & Pradelles Ph.

Compounds labelled by the acetylcholinesterase of *Electrophorus Electricus*. Its preparation process and its use as a tracer or marquer in enzymo-immunological determinations.

United States patent, No 1,047,330. September 10, 1991

2. J. Grassi and P. Pradelles

The use of Acetylcholinesterase as a Universal marker in Enzyme-Immunoassavs

Proceedings of the Third International Meeting on Cholinesterases, American Chemical Society (1991)

- **3.** Philippe Pradelles, Jacques Grassi, and Jacques Maclouf Enzyme Immunoassays of Eicosanoids Using Acetylcholinesterase *Methods in enzymology (1990), vol. 187, 24-34*
- **4.** Kojima M, Kangawa K Ghrelin: structure and function *Physiol. Rev* (2005), 85:495-522,
- **5.** Bluet-Pajot MT, Tolle V, Zizzari P, Tomasetto C, Grouselle D, Epelbaum J

Ghrelin: A striking example of neuroendocrine peptide pleiotropy *Med Sci (Paris), August 1, 2005, 21 (8-9): 715-21*

6. de Faria Barros A et al

Is there association between acyl-ghrelin and infl ammation in hemodialysis patients?

J Bras Nefrol. (2013) 35(2):120-126

7. Grousselle D et al

Variations des peptides dérivés de la préproghréline au cours du repas dans l'anorexie mentale restrictive Poster GIR-AFDAS-TCA2014

8. Delhanty P et al

Des-acyl ghrelin analogs prevent high-fat-diet-induced dysregulation of glucose homeostasis

FASEB J. (2013) 27(4):1690-1700

9. Costantini, V et al

GSK1614343, a Novel Ghrelin Receptor Antagonist, Produces an Unexpected Increase of Food Intake and Body Weight in Rodents and Dogs

Neuroendocrinology (2011);94:158-168

10. Porporato E, Filigheddu N et al

Acylated and unAcylated Ghrelin impair skeletal muscle atrophy in mice.

- J. Clinical Invest (2013) 123(2): 611-622
- **11.** Sentissi O, Epelbaum J, Olié JP, Poirier MF Leptin and Ghrelin Levels in Patients With Schizophrenia During Different Antipsychotics Treatment: A Review Schizophrenia Bulletin (2008) 34(6), 1189–1199
- **12.** Valentin MA, Ma S, Zhao A, Legay F, Avrameas A Validation of immunoassay for protein biomarkers: Bioanalytical study plan implementation to support pre-clinical and clinical studies.

J Pharm Biomed Anal. (2011) 55(5): 869-877

13. European Medicines Agency

Guideline on bioanalytical method validation, 21 July 2011

> Additional readings

List of publications quoting the use of SPI-Bio Ghrelin (human) kits

Beauloye V et al

High unacylated ghrelin levels support the concept of anorexia in infants with prader-willi syndrome.

Orphanet J Rare Dis. 2016 May 4;11(1):56. doi: 10.1186/s13023-016-0440-0

Kuppens RJ et al

Elevated ratio of acylated to unacylated ghrelin in children and young adults with Prader-Willi syndrome.

Endocrine. 2015 Dec;50(3):633-42. doi: 10.1007/s12020-015-0614-x. Epub 2015 May 20

Vestergaard ET et al

Acyl Ghrelin Induces Insulin Resistance Independently of GH, Cortisol, and Free Fatty Acids.

Sci Rep. 2017 Feb 15; 7:42706. doi: 10.1038/srep42706

Vvan Adrichem RC et al

Plasma acylated and plasma unacylated ghrelin: useful new biomarkers in patients with neuroendocrine tumors? Endocr Connect. 2016 Jul;5(4):143-51. doi: 10.1530/EC-16-0021. Epub 2016 May 23

Lauritzen ES et al

Circulating acylghrelin levels are suppressed by insulin and increase in response to hypoglycemia in healthy adult volunteers. Eur J Endocrinol. 2015 Apr;172(4):357-62. doi: 10.1530/EJE-14-0880. Epub 2015 Jan 19

Kanat BH et al

Significance of appetite hormone ghrelin and obestatin levels in the assessment of the severity of acute pancreatitis. Turk J Gastroenterol. 2014 Jun;25(3):309-13. doi: 10.5152/tjq.2014.4081

Delhanty P et al

The Acylated (AG) to Unacylated (UAG) Ghrelin Ratio in Esterase Inhibitor Treated Blood Is Higher Than Previously Described *Poster SUN-1060, 16th International Congress of Endocrinology ICE ENDO 2014 June 2014.*

Homann D et al

Hyperleptinemia independent of body adiposity in women with fi bromyalgia *Rheumatol Int (2014) DOI 10.1007/s00296-014-2988-0*

Wasse L et al.

A05306 Acylated Ghrelin (human) Easy Sampling

The influence of vigorous running and cycling exercise on hunger perceptions and plasma acylated ghrelin concentrations in lean young men

Appl. Physiol. Nutr. Metab.(2013) dx.doi.org/10.1139/apnm- 2012-0154

Gungor S et al

Ghrelins, obestatin, nesfatin-1 and leptin levels in pregnant women with 2 and without hyperemesis gravidarum.

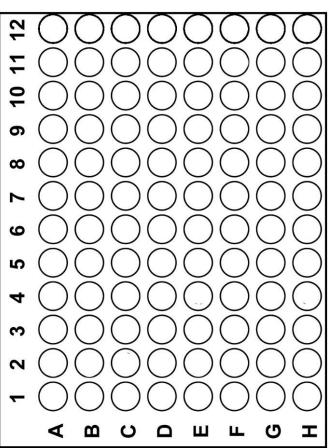
Clin Biochem. (2013) DOI: 10.1016/j.clinbiochem.2013.01.015

Broom D et al

Influence of resistance and aerobic exercise on hunger, circulating levels of acylated ghrelin, and peptide YY in healthy males Am J Physiol Regulatory Integrative Comp Physiol (2009) doi:10.1152/aipregu.90706.2008

Broom D et al

Exercise-induced suppression of acylated ghrelin in humans J Appl Physiol (2007) doi:10.1152/japplphysiol.00759.2006


Lee Y et al

Lupin-enriched bread increases satiety and reduces energy intake acutely

Am J Clin Nutr (2006) doi: 10.3945/ ajcn.2008.26708

Cederberg H et al

Unacylated ghrelin is associated with changes in body composition and body fat distribution during long-term exercise intervention European Journal of Endocrinology (2011)DOI: 10.1530/EJE-11-0334

A05306 Acylated Ghrelin (human) Easy Sampling

With 30 years of experience, Bertin Bioreagent develops and sells best-in-class kits and products for life science research labs. Our scientist team innovate each day to tailor biomarker assays, pre-analytical products, kits, antibodies and biochemicals that are ready to use, fully validated with a strict quality control. We strive to address a broad range of research interest: inflammation, oxidative injury, endocrinology, diabetes, obesity, hypertension, pain, prion diseases.

Bertin Bioreagent has also a long expertise in developing customized solutions adapted to your need. Feel free to contact us for your special projects!

To offer a complete solution to researchers, Bertin Health & Life Sciences offers a range of unique laboratory equipment from Air Sample collection and Sample Homogenization.

Our products are available worldwide through us directly or via our distributor network. Our sales team is active on all continents and will be delighted to answer all your commercial questions.

Should you need help with a product, you can contact our technical support by emailing to tech@bertin-bioreagent.com
Should you need help with an order, you can contact our customer service by emailing to order-life@bertin.fr

Please visit our websites: Bertin-technologies.com Bertin-Bioreagent.com Bertin-Corp.com

CONTACT US

Bertin Technologies 10 bis Avenue Ampère Parc d'Activités du Pas du Lac 78180 Montigny-le-Bretonneux

+33 (0)139 306 036

tech@bertin-bioreagent.com

EU webstore: Bertin-bioreagent.com US webstore: Bertin-corp.com